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Davydov’s model of solitons in a-helix protein chains is shown to display features of self-organized
criticality (SOC), i.e., power-law behavior of correlations in space and 1/ f noise, as a consequence of
considering random peptide group displacements from their (periodic) equilibrium positions along a
chain. This may shed light on a basic mechanism leading to obtaining flicker noise in a-helix protein
chains and to predicting a SOC regime in biomolecular structures from first principles. We believe
our treatment of 1/f noise to be of some relevance to recent findings due to Voss on DNA [Phys.

Rev. Lett. 68, 3805 (1992)].

PACS number(s): 02.50.—r, 05.60.4+w, 87.10.+€, 72.70+m

The concept of solitons has found a fascinating novel
application to biological phenomena since Davydov [1]
introduced a cubic nonlinear Schrédinger equation to de-
scribe energy transport in molecular chains such as o
helices. The topological and dynamical stability of Davy-
dov solitons, i.e., conservation of form and velocity after
interaction, respectively, is related to the spontaneous
(local) symmetry breaking of the protein molecules. A
dynamical balance between the dispersion due to the res-
onance interaction of intrapeptide dipole vibrations and
the nonlinearity of the interaction of such vibrations with
the (time-dependent) local displacements from the equi-
librium positions of the peptide groups—say, S—is be-
lieved to play a crucial role for the transport of energy
released in the hydrolysis of the adenosine triphosphate
molecule [2].

Because of this, Davydov solitons—as well as alterna-
tive soliton models to account for nonlinearity in quasi-
one-dimensional (1D) biomolecular chains (see, e.g.,
[3-5])—are an active research field. Recent progress has
been directed to relating excitations in Davydov systems
to Bose-Frohlich condensation phenomena [6,7] and to
including temperature effects [8]. Even though a large
amount of theoretical work has been accumulated in the
past two decades, following these Davydov pioneering
ideas, there is still a number of problems open. First,
there is as yet no experimental verification of Davy-
dov solitons [9,10]. Indeed, Davydov’s model might look
rather unrealistic [6], but from the standpoint of physics
it is not unreasonable to study it as an effective way
towards achieving a better understanding of complex
molecular systems. Second, to our knowledge, the case
of having random peptide group displacements 8 due to
local disorder has not been fully considered.

To this end the recent proposal by Voss [11] (see also
[12,13]) that long-range correlations and 1/f noise can
be detected in DNA sequences when viewed as random
processes gives one inspiration for carrying out an inves-
tigation on random . The idea that nucleotide bases in
strands of DNA may be correlated over several thousands
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of base positions opens the way to exploring how, and to
what extent, solitons might be useful for gaining physical
insight into Voss’s relevant finding on DNA. It is tempt-
ing to analyze this phenomenon from a first-principles
formalism based on soliton physics and, from this, to un-
derstand that class of nonlinear dynamical systems that
drives itself into a statistically stationary critical state,
the so-called self-organized criticality (SOC) [14], with no
intrinsic length or time scale, where the systems exhibit
power-law (fractal) behavior and generate flicker noise
[15].

In this work we shall make a small step towards such
a theory to show that Davydov solitons in quasi-1D a-
helix chains at 0 K, if they exist, might display features of
SOC as a consequence of assuming random peptide group
displacements from their (periodic) equilibrium positions
along a chain. This suggests a possible physical mecha-
nism for understanding SOC from an ab initio basis in
terms of interactions. In addition, our work complements
recent ideas put forward by one of us [16], regarding an
analytical continuous probability theory for SOC, in that
we propose here that random peptide group displace-
ments might be one possible mechanism for generating
1/f noise in macromolecular chains.

We start considering the simplest Davydov protein
molecule, i.e., & = 1 [1], which we briefly describe be-
low for completeness. The basic idea is that the amide-I
vibrational energy is coupled through interaction with
acoustic phonons. The molecular chain has N (> 1)
molecular units of mass M (~ 114 amu) placed at posi-
tions: =, = nR+u,, where n is an index that counts unit
cells (in the hydrogen-bonded direction), and un,(< R)
are small displacements from the equilibrium positions
nR caused by internal molecular motion. The molecu-
lar groups are taken as the peptide subunits of a-helix
protein polymers and R as the length of the amide’s hy-
drogen bond (~ 3 A).

The Hamiltonian operator H for the collective degrees
of freedom (DOF) resulting from the interaction of in-
tramolecular amide-I modes (C=O stretching) and the
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lattice motion of such a chain is
H = Hyjp, + Hpp + Hiny (1)

In the above,

Hyip = Z{%B,‘;Bn — J(BlBpi1 + BL+1Bn)} y (2)
n

where B); and B, are boson creation and annihilation
operators for the vibrational excitation at the nth site as-
sociated with the amide-I dipolar oscillator—having the
quantum energy €o ~ 0.205 eV. The dipolar resonant in-
teraction is only considered between the nearest-neighbor
molecules, i.e., J = 2d?/R3 (= 9.67 x 10~* eV from in-
frared spectra), where d (= 0.29 D) is the dipolar electric
moment aligned along the C=O bond.

The second term of Eq. (1) describes the longitudi-
nal harmonic oscillations (phonons) of the chain, which
in second quantized form is written as a sum over the
momentum normal modes g, namely,

Hyp, = Z A (bibg + 3) (3)
q

where b} and b, are phonon creation and annihilation
operators. €)q is given by the dispersion equation Qg =
4(v2/R?)sin®(1qR) with v, = Ry/w/M and w an elas-
ticity coefficient (~ 76 N/m).

The last term in the collective Davydov Hamiltonian is
the nonlinear interaction between the vibrational DOF’s
and the phonon DOF’s, namely,

Hint = \/_N q’ZnX(Q)e anB:zB’n(bq + b—q) ’ (4)

where x(q) = x*(—q) = ix(thQq )1/2sin(gR). The phys-
ical meaning of the nonlinear coupling parameter X is to
characterize change effects of the amide-I bond energy
per some unit extension of the hydrogen bond. This pa-
rameter is expressed as x = Oep/OR, whose numerical
value lies in the interval: x = (3-6.2) x 10711 N.

For the wave function of the above Schrédinger equa-
tion, Davydov wrote

%5 () = D an(t) explo(t)] B} 1|0)) (3)

where ||0)) is a generalized vacuum state in the collective
space of vibrational-phonon DOF’s and ay,(t) are nor-
malized functions. The quantum-mechanical phase o(t)
is written as o(t) = —3 3, [Ban (£)B}, — B3n(t)bg], which
is termed the D; ansatz. It is a superposition of ten-
sor products of single-exciton states and coherent phonon
states [17]. There also exists a classical displaced oscil-
lator ansatz (or D) as well as a modified m — D, state
[18].

For the complex functions a,(t) and the real func-
tions Bgn(t) of Eq. (5)—which characterize the vibra-
tional state and the displacement from equilibrium of a
single molecular unit at site n, respectively—Davydov
obtained a system of two coupled discrete-differential
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equations expressing their “classical” Hamiltonian evolu-
tion. In the long-wavelength approximation such discrete
functions are replaced by two continuous limits a(¢) and
B(¢), where { = nR — v,t, subject to the constraint that
the propagation velocity vs is constant (i.e., stationary
propagation). A further approximation is to take nR as
any point z along the chain axis. Besides 3, the func-
tion p(¢) = _R§%Q is also defined as characterizing
the (infinitesimal) difference of displacements of nearest-
neighbor molecules within the chain and modulation of
the chain due to vibrational solitons.

Solutions of the energy transport within Davydov’s
Hamiltonian treatment in the continuous and subsonic
regime (i.e., s = vZ/v2 <« 1) are as follows:

o(¢) = V2t (T Eleoan1 (L0) | (g)
PO = gy (5¢) (™)
BO) = gy lt — tanb(@0)] (®)

where Q = m%g%. The quantities u, E,, and s are
resgectively given by u = x2/Jw(l —s?), E; = g9 — 2J +
f—;”ﬁ; — Ju?/3, and s = v, /v,.

In the above «(() is essentially the Davydov vibra-
tional soliton, which is a quasi-localized structure with
size of the order R/u, propagating with velocity v, and
transferring vibrational energy €¢. Furthermore, p(¢) is
the hydrogen bond soliton, whereas 3(¢) is a kink soli-
ton of the displacements of the peptide groups from their
(periodic) equilibrium positions. During their (constant-
vs) movement, the three solitons (usually denoted as S,
R,, and K, respectively) strongly influence each other
in a way that still presents an open problem. Of special
interest to us here is the K solution, which might be
considered as a spatial continuous representation of the
D’Alambert type [i.e., of the form B(z—w,t)] of a product
of coherent states that is needed to obtain the nonlinear
Schrédinger dynamics [19).

Let us next attach, to the above Davydov model, a spe-
cial type of random disorder that may result from several
sources, such as radiation and others, and that fluctuates
in time. We shall come back to this later on. In the (-
coordinate frame, the central position of the kink K7 can
be fixed as the spatial origin, and small time excursions
of its origin will be allowed. Then it is straightforward to
estimate time correlations via the (dimensionless) noise
power spectrum of the temporal evolution of such fluc-
tuations by characterizing random processes in 8 of Eq.
(8) at the time scale 0 < ¢t < 7 = 1/f by [11]

T 2
ssn) o x| [Co@emra ©)

where 7 — oo and ((z, t) is the random variable. Figure
1 shows the results obtained for the spectral density Sg
when using £ — x¢ + Az, such that we set o = 0 and
choose Az to vary randomly between +1 for simplicity.
These results have been computed using a standard fast-
Fourier-transform algorithm. On averaging over thou-
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10 °¢ The aforementioned integration limits lead to the con-
dition Ag — A1 + ¢ < 0 and was discussed in our previous
work [16]. If Az # A1, then we get [in terms of 7(0)]
E 10 *¢ C*
5 7(¢*) = {14+ ——— ) {7(0) + o In coshAz}
® - A2 — A1
& 09l "
I 3 —Co (— In coshA; + In cosh(A2 + C*))
g i A2 — A1
2 12
B el (12)
where ¢* = (/o, 7(0) = Co(A2 — A1)(1 +T'x), and I'y =
(IncoshA; — IncoshAz)/(A2 — Ar1).
10 — 16 B 1(') S0 In Fig. 2 we show the dependence of the normalized
frequency probability distribution function 7 on the reduced vari-

FIG. 1. Noise power spectrum for the temporal evolution
of the random fluctuations in B(¢*), including periodical re-
setting.

sands of ensembles, 2'3 (unit) time steps within the in-
terval 0 < ¢t < 10% are found to suffice in achieving less
than a 5% error in calculations. As revealed from this
figure the noise power spectrum of the Davydov G dis-
placement, when assumed to be a function of random ¢,
shows a clear manifestation of 1/f noise. We believe this
treatment of flicker noise to be somehow of relevance to
the findings of Voss on DNA [11]. In particular, we have
superposed a peaked structure in the 1/ f power spectrum
of 8 by periodically resetting Ax to naught, as shown in
the high-frequency region of Fig. 1.

From these results we can see that the transition to
a steady state is strongly related to the peptide group
fluctuations from their initial (i.e., o = 0, o = 0) condi-
tions. According to such complex dynamics, the physics
behind this phenomenon, i.e., the existence of time corre-
lations, is due to the random disorder we have introduced
and whose possible cause will be analyzed below.

Let us first also investigate the space domain by fixing
the time scale (i.e., by now assuming static solutions).
We consider once more the random variable ¢ to char-
acterize random disorder of the peptide group displace-
ments from their equilibrium positions with a density
probability ¢ proportional to 3(¢) [16]. Since the uni-
form probability distribution function of having random
events can be . written as

¢2
G(62) -~ G(¢1) = P{G < C < G} ~ /< (¢ d¢’, (10)

where { } indicates the function interval; then, this inte-
gral over the limits (o = A\1{p > ¢ + A2{o = (4 gives

A1éo

; B¢ d¢' = —7(¢)

(11)

with 3 given in Eq. (8) and (o being a constant. The
minus implies that the functions G are here assumed to
satisfy the condition G({ + A2$0) > G(A1¢o) for ¢ # 0,
which does not need to be defined, whereas the free pa-
rameters A; (¢=1,2) will restrict the range of ¢.

G(MCo) — G(C + Aalo) = /<

+A2

able ¢* for values of A\; = 3, A2 = —8, and 7(0) = 1,
which, in turn, determine the value of (3. In our calcula-
tions, i.e., using Egs. (8) and (12), we have also reduced
ETlé?"F o 1 and Q¢y « 1 for simplicity. The choice of
7(0) allows us to normalize 7(¢*) and to mimic features of
SOC, namely, a power-law behavior in space correlations
(within the range 0 < ¢* < 8), provided ¢* is associated
with the log function of a measured random event. In
fact, we have that 7(¢* — 0) — 1 and 7(A\;1 — A2) =0,
whereas if A2 + ¢* = 0 then Incosh(A; + ¢*) = 0, and
hence 7 of Eq. (12) depends linearly on ¢* for values
"< =

To see more clearly possible power-law features in the
behavior of 7 over an extensive range of values of (* < 8,
we calculate the linear derivative of 7(¢*), which is also
plotted in Fig. 2 by dotted lines. For the smallest dis-
played values of ¢* this function converges to a constant
negative value, revealing in this way the constant nature
of the negative slopes in the (7-¢*) curves. In view of
these features of the derivative of 7, the second derivative
has also been included in Fig. 2. It presents a sharp peak
around the inflection point of %, thus indicating the
range of validity of such a power-law behavior. The cut-
off in the ¢* axis for the 7 curve is related to the system
size or integration limit (i.e., A1 — A2 &~ 11). Accordingly,
it reflects the range of long-range correlations in the space
domain. In view of these results we can interpret § as a

1.0
0.8
0.6
=~ 0.4
0.2

0.0

-0.2

FIG. 2. (Full line) probability distribution function 7 of
having random events vs reduced variable (* using A1 > Az,
such that A2 < 0 and 7(0) = 1. (Dotted lines) first and
(smallest dotted lines) second derivative of 7 with respect
to ¢*.
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nonequilibrium order parameter of a transition from the
D; phase of the chain to the Frohlich phase [20]; that is,
a phase transition from the dynamical balance between
the intramolecular excitations (and their exchange) and
the longitudinal excitations of the linear Davydov chain
to the Frohlich nonthermal excitations of longitudinal po-
larization modes arising in a far-from-equilibrium regime
supported by the flow of energy.

We focus now on some possible effects, which have
usually been neglected when taking a continuous limit
within the framework of the Davydov theory, but which,
in our opinion, may become important as the source for
generating randomness. These effects include radiation
chaos and disorder. Radiation effects were first discov-
ered in the context of lattice topological solitons (disloca-
tions), and subsequently proved to exist also in the case
of dynamical solitons [21]. In fact, subsonic kinks in a
monoatomic chain permanently radiate small-amplitude
oscillations. Besides this, subsonic kinks (as well as su-
personic ones) in diatomic chains lose energy in this pro-
cess [21]. Chaotic effects, due to lattice discreteness have
been discussed in Ref. [22] within a vibron model, with
on-site potentials, which is very similar to the Davydov
model. Such an effect can be understood as a perturba-
tion of an integrable system. It is a chaotic effect that
might imply a random spatial arrangement of stationary
solitons. The effect of disorder, on the other hand, is
a very important feature of many nonlinear chains [23].
Considering the 20 different natural amino acids in real
peptide chains, each of different mass, one may think
of a sequence of random masses as having important ef-
fects on soliton propagation. This has been observed by
Forner [24] in investigating sequences of masses, spring
constants, nonlinear coupling constants, heat baths, and
disorder in the dipole coupling. Another crucial effect to
consider when applying the continuous limit is the im-
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purity disorder in which various types of kink-impurity
interactions may be possible [25]. We believe all of these
phenonomena to generate (a sort of intrinsic) randomness
for the displacements (3 along a single molecular chain
(i.e., @ = 1), which leads to obtain SOC features as we
have discussed in this work. We add that the present
ideas may be easily extended to chains with a > 1, since
the soliton solutions of the Davydov Hamiltonian—i.e.,
S1, R1, K1—keep their form unchanged [1].

We have thus tried to interpret, within the simplest
Davydov soliton theory, randomness by combining fea-
tures of both discreteness and disorder effects. These
considerations may be useful in understanding long-range
correlations in biological systems [26] and flicker noise,
possibly including DNA [11]. We have predicted a SOC
dynamical regime in biomolecular systems from first prin-
ciples. Indeed, we have been able to derive such a SOC
regime as a consequence of random [, which has been
analyzed in terms of a nonequilibrium phase transition
between the D; soliton state of the chain and a proba-
ble Frohlich-condensed phase. The present SOC regime
might be seen as a proof of the soliton stability against
random disorder. In turn, this may be an indication of
the nonequilibrium nucleation of Frohlich domains along
a single chain. Of course, to characterize randomness of
the peptide group displacements with a density probabil-
ity ¢ < B(¢) may be seen as heuristic. But, in view of
the obtained results, this can be considered as one of the
simplest, most reasonable ways to relate local properties
to macroscopic behavior. To this end, note that a rela-
tion of this kind has also been used within the context of
pattern formation [27].
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(ICTP-Trieste) for encouragement.
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